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The investigation of the effects which a changing mean flow has on a uniform train of 
internal gravity waves (Thorpe 1978 a )  is continued by considering waves in a uniformly 
accelerating stratified plane Couette flow with constant density gradient. Experiments 
revea.1 a change in the mode structure and phase distribution of the waves, and their 
eventual breaking near the boundary where the mean flow is greatest, the phase speed 
of the waves being positive. A linear numerical model is devised which accurately 
describes the waves up to -the onset of their breaking, and this is used to investigate 
their energetics. The working of the Reynolds stress against the mean velocity gradient 
results in a very rapid transfer of energy from the waves to the mean flow, so that by 
the time breaking occurs only a small fraction of their initial energy remains for 
possible transfer into potential energy of the fluid. 

The consequences have important applications in oceanography and meteorology, 
to flow stability and flow generation, and explain some earlier laboratory observations. 

1. Introduction 
This paper is concerned with the interactions between a changing mean flow and 

a train of internal gravity waves. It is known that, in the ocean, although internal 
gravity waves dominate the energy spectnim in a band between the inertial and 
Brunt-Vaisala frequencies, most of the energy resides in lower frequency motions. It 
is inevitable that the internal waves will be subjected to a changing ‘mean’ flow, i.e. 
they will encounter motions of much lower frequency with which they may interact. 

The interactions between waves and mean flow may have important consequences. 
For example Holton & Lindzen (1972; see also Plumb 1977) have suggested that the 
quasi-biennial oscillation of the zonal wind in the tropical stratosphere arises from 
an interaction between the mean wind and large-scale equatorial waves. 

A n  example of wavelmean-flow interaction in the ocean was described by Thorpe 
(1978a, hereafter referred to as I). Observations by Halpern (1974) show that when 
the upper layers of the ocean are accelerated by a wind stress, the Richardson number 
in the thermocline becomes small. The difference in the speed of the flow above and 
below the thermocline becomes comparable with the speed at which internal waves 
propagate, and they are prone to distortion and breaking. Some of these effects were 
examined in an experiment described in I in which internal waves were generated in a 
long closed tube containing two layers of liquid of different densities with a diffuse 
interface between them. The tube was tilted to initiate a uniformly accelerating mean 
flow. The waves were seen to distort and break, and an explanation was offered in 
terms of a finite amplitude description of waves in a steady flow. The energy exchanges 
involved were not discussed in I and effects of the mean flow acceleration were ignored 
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on the assumption that the motion was at any time ‘quasi-steady’. These omissions 
are rectified here. The results show that very strong interactions take place between 
the wave and the changing mean flow. These lead to a rapid loss of wave energy 
through the working of the Reynolds stress on the mean velocity gradient and a 
corresponding increase in the kinetic energy of the mean flow, so that by the time 
breaking occurs (affecting now the potential energy of the mean flow) only a small 
fraction of the initial wave energy remains available for transfer. 

We have made some more experiments which demonstrate these effects, using a 
fluid of constant density gradient rather than the ‘almost two-layer ’ fluid of I. When 
the tube is tilted an accelerating flow with a nearly uniform velocity gradient, a 
stratified plane Couette flow, is produced, in which the Richardson number falls its 
(time)-2. The steady Couette flow is stable at all positive Richardson numbers, and it 
appears probable that the accelerating flow is also stable (in the sense that no in- 
finitesimal disturbances grow indefinitely; see appendix). If, however, the flow 
initially contains a wave of small, but finite, amplitude the wave will ultimately break 
when the flow reaches some Richardson number which is a function of the wave 
slope ttnd (non-dimensional) wavenumber. This may in practice limit attempts to 
generate such low Richardson number flows since some background wave noise is 
inevitable. 

The properties of internal waves in a steady stratified plane Couette flow are 
reviewed in $ 2  and the experiments are described in $ 3. They demonstrate how the 
wave disturbance becomes concentrated at the boundaries of the gradient region, 
the vertical direction of energy transfer being determined by the sign of the vector- 
scalar product c .  g x a, where c is the wave speed (measured in a frame of reference 
in which the integrated mean flow is zero), g is the acceleration due to gravity and 0 
the vorticity in the mean flow. Such a redistribution may, in the ocean, lead to energy 
concentration at the top and bottom of the seasonal thermocline or perhaps in the 
benthic boundary layer. 

A numerical experiment is described in $ 4  and compared with the laboratory 
observations, and possible applications are discussed in the final section. 

2. Finite amplitude internal gravity waves in a steady stratified plane 
Couette flow 

As a preliminary to the experiments, we here present results for internal waves 
in a steady flow with constant velocity gradient 77‘ and constant Brunt-Vaisllli 
frequency N .  

A finite amplitude theory for steady waves in a shear flow is given in I. The method 
used is a conventional one in which it is assumed that an ordered expansion of the 
flow variables in terms of a Fourier series can be made about a linear wave solution. 
The coefficients at successive orders are determined from the equations which result 
when the expressions for the flow quantities are substituted into the equation of 
motion and the Boussinesq approximation is made. It is plausible that such a method 
will give a good approximation for the wave as it approaches breaking (when the 
speed of particles somewhere in the flow becomes equal to the phase speed of the wave) 
a t  low Richardson numbers. Banks, Drazin & Zaturska (1976) have shown that, in a 
stably stratified shear flow with a simple maximum or minimum in the flow speed, 
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FIGURE 1. A sketch of the mean flow and density distribution and the vertical distribution of the 
amplitude of the linear solution for the first-order mode of wavelength 1.97 h (corresponding to  
experiment A )  in steady flows at  various Richardson numbers Ri. 

there is a class of ‘internal gravity waves modified by shear’. Waves of given mode 
and wavelength in this class have the property that their phase speed tends towards 
the maximum flow speed from above, or the minimum from below, as the Richardson 
number of the mean flow falls towards a critical value, which for some flows may be 
zero. As this critical value is approached, the flow needs less and less enhancement by 
the wave motion itself for the condition of breaking to be attained, and hence at  low 
Richardson numbers an expansion about a linear wave solution appears appropriate. 
This solution corresponds to an eigenvalue of the Taylor-Goldstein equation 

d2 N2 -+- 
dz2 ( c -  U)2 

with Y(0) = Y ( h )  = 0. Here z is the vertical co-ordinate, U ( z )  is the mean horizontal 
flow and c is the phase speed, found as an eigenvalue of the equation corresponding 
to waves of wavenumber k. When N and U‘ ( = d U l d z )  are constant the solution may 
be expressed in terms of Bessel functions (Eliassen, Heriland & Riis 1953). For long 
waves the solution simplifies a little (Davey & Reid 1977), but it is still so complicated 
that, in proceeding to second and higher orders, product terms are encountered in the 
equations which render them beyond simple analytical solution. We have therefore 
proceeded as in I to a numerical solution. 

We shall confine discussion to a particular case which corresponds to experiment A ,  
which is described later. This experiment was fairly typical and illustrates the features 
we wish to discuss. Figure 1 shows a sketch of the mean flow and the (linear) first-order 



626 S. A .  Thorpe 

R ;  f 

FIGURE 2. The variation of the phase speed c (normalized with the speed in the absence of mean 
flow c(o3)) of the waves and the second-order correction to this speed, c, (normalized with c and the 
square of the maximum wave slope), with Rf and U ( z  = O)/c(m) for waves of length 1.97 h (corre- 
sponding to experiment A )  in steady flows. 

normalized wave amplitude 7 = Y / ( c -  U )  as a function of depth for a first-mode 
wave of length 1.97h for various values of the Richardson number Ri = N 2 / V 2  of 
the mean flow. The effect of the flow is to displace the maximum elevation towards 
the lower boundary (U' is taken negative as shown in the sketch so as to correspond 
to the experiments), where the flow in the direction of the phase speed c is greatest. 
(U' positive would produce maximum elevation near the upper boundary.) Figure 2 
shows the variation of c with Ria or with the speed at the lower boundary, to which c 
tends as Ri decreases as predicted by Banks et al. (1976). Figure 2 also shows the 
second-order correction to the phase speed, resulting from finite amplitude effects. 
This is negative for large Ri, but becomes positive and appears to become increasingly 
large as Ri decreases below unity. The solutions have not been continued to very small 
values of Ri because of difficulties in obtaining convergence and adequate resolution 
associated with the large displacements localized at  the lower boundary. 

Figure 3 shows the variation with Ria of the wave slope (kmaxr(z)) a t  which the 
theory predicts that the horizontal particle speed somewhere in the wave becomes 
equal to the phase speed of the wave. Three curves are shown corresponding to the 
first-order (linear) solution and the second- and third-order solutions. These curves 
may be regarded as stability curves. Waves in a flow of given Ri with slope below the 
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FIGURE 3. The slope of internal waves of the first mode and of length 1.97 h (corresponding to 
experiment A )  required to generate horizontal velocities equal to the wave phase speed in steady 
flows a t  various R;&. The upper horizontal scale shows the time at which the Richardson number 
in the lower scale is achieved in experiment A (see 9 3).  

curves are stable, but those with slopes greater than the ‘critical slope ’ corresponding 
to points on the curve contain a region where the theory is strictly invalid, but in 
which it appears that the particles move forward more rapidly than the wave advances, 
so leading to gravitational instability, wave breaking and possibly rotor formation. 
The second-order phase speed increases with wave slope more rapidly than the 
second-order particle speed when Ri is less than about unity and hence, to second 
order, no waves, however large, are found which have particle speeds which are equal 
to the phase speed. This anomalous effect is however removed when the third-order 
terms are included. Except a t  large Ri the first- and third-order solutions fall close 
together. This does not however imply that the finite amplitude effects are negligible 
but rather that they are almost balanced, the increase in phase speed being comparable 
in size to the increase in particle speeds due to second- and third-order effects. Indeed, 
near the third-order ‘ critical slope ’ the second-order contributions to the wave 
amplitude become comparable to the first at R, N 1 ,  and for smaller Ri finite amplitude 
effects are important even at very small wave slopes. 

The mean shear causes a considerable reduction in the wave slope necessary for 
incipient breaking. A mean flow Richardson number of unity reduces the third-order 
slope by a factor of about 19 from that in the absence of shear. Reductions of similar 
size have been found in numerical experiments with waves of other wavelengths, and 
in fluids of other density distributions (see I). 

3. Laboratory experiments 
The apparatus is a 4.85m rectangular tube with Perspex side walls which is of 

height 16 cm and width 10 cm and which may be tilted about a horizontal axis normal 
to its length. At one end of the tube there is a flap wave maker (figure 4). When 



628 S. A .  Thorpe 

I"- 

............... ...... ....... 
............... A ............ ....... ................... ................ ..... 

...... ....................... ............. 

....... 
............ .................. 

FIGURE 4. The wave maker. The waves in the brine solution A are generated by the oscillation of a 
vertical flap B about a horizontal axis. The flap is connected to the tube walls by a flexible rubber 
membrane C,  and is driven through rods D, E ,  P,  G, H ,  connecting linkages, and a disk J from 
an eccentric cam on disk K ,  itself driven from a motor through a continuously adjustable hydraulic 
gearbox. The entry to the liquid-filled tube is through an O-ring a t  L. The working section A and 
the volume containing the flap driving mechanisms D, J, E and P are filled simultaneously 
through inlet tubes M and N ,  air escaping from tube P until the drive volume is filled, when P 
is closed. The flap amplitude is controlled by adjusting the radial distance of the connexion H 
onto K .  

operating at constant frequency this generates primarily the first-mode internal wave 
(Thorpe 1968a) when the tube is filled with a brine-water mixture of constant density 
gradient. A wave train is set up and, before reflexion has occurred at the far end of 
the tube, the tube is tilted to initiate a uniformly accelerating shear flow (Thorpe 
1968b). (Some higher-order modes and harmonics are generated by the wave maker 
but these appear not to distort the wave form significantly in the centre of the tube 
provided that the tube is tilted soon after the waves are first generated, presumably 
because the higher modes and harmonics travel less rapidly than the first and are 
more rapidly dissipated by viscosity. ) 

The subsequent development of the waves in experiment A was photographed and 
is shown in figure 5 (plate 1) .  Dye has been added to the fluid during filling to mark 
layers of uniform density. The photographs show the wave form at approximately 2 s 
intervals, about half the period of the initial wave hain. By only 2.1 s after the tube 
was tilted (figure 5 b )  it is clear that the wave phase is no longer constant through the 
depth of the tube, an observation of great importance since it suggests that, unlike 
waves in a steady flow ( $ 2 ) ,  these may support Reynolds stresses and energy may be 
transferred between the wave and the mean flow. We return to consider this in 0 4. 

The wave elevations become concentrated near the lower boundary as expected 
(figure 1 )  and at about 8 s after the tube was tilted the waves begin to break, fluid 
particles being carried forward more rapidly than the wave at their level can advance, 
and regions develop in which the fluid is gravitationally unstably stratified. UntiI 
the onset of wave breaking the maximum amplitude of the waves on the dyed layers 
remains roughly constant (see figure 8) and the maximum wave slope is about 0.089. 
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The steady flow stability diagram (figure 3) shows that, to third order, waves with 
this slope should break at Ri = 2-79, which is reached at 3.7 s after the tube is tilted, 
much earlier than the time at which breaking is observed in the experimental acceler- 
ating flow. 

The phase changes accompanying the evolution of the wave lead to the appearance 
of regions of much increased vertical density gradients, as well as regions (particularly 
those in which breaking develops) where the gradients are reduced. The use of shadow- 
graph imagery revealed regions of high density gradient advecting with the waves near 
the bottom boundary and first appearing at about Ri = 1. These regions were finely 
structured, suggesting the pattern of evolution of parasitic waves arising from para- 
metric instability shown by McEwan & Robinson (1975), and there was some evidence 
of flow separation from the lower boundary, although whether this was the result of 
rotor formation or separation of the viscous sublayer is not clear. 

Stronger evidence of rotor formation came from a study (experiment B )  of the 
wave development after the tube had been returned to a horizontal position after 
being tilted for 5-59 (figure 6, plate 2). Evolution of the wave continues for a while 
but the profile appears to tend towards a quasi-steady state (see also figure 12 and 
later discussion) having an asymmetrical wave form with a rounded front near the 
lower boundary, suggesting the presence of a rotor attached to the lower boundary. 

It is unfortunate that this is a flow in which the largest velocities and most important 
wave phenomena are at or near the lower boundary, where viscous effects are most 
likely to be important. These were however almost excluded in a further experiment 
(experiment C ,  shown in figure 7, plate 3), made in a fluid stratified in three layers, 
with a linear density gradient in the middle layer between (and including) the upper 
and lower dye bands and uniform densities in the layers outside. This represents a case 
intermediate between the ‘almost two-layer ’ experiments of I and the experiments 
with a constant density gradient described here. The experiment was conducted as 
before, the waves being generated first and the tube tilted to initiate a uniformly 
accelerating shear flow with a distribution of speed similar to the density profile. The 
development of the waves in the stratified central layer continues as already described, 
the disturbance vanishing from the upper dye layers and increasing in the lower, but 
with the maximum wave amplitude remaining almost constant. Breaking occurs at  
the lower edge of the stratified region, being preceded by a vertical asymmetry of 
the wave form and the suggestion of the influence of a second harmonic on the wave 
shape. Similar effects were observed and described in I .  The phase differences observed 
in figure 5 are again visible and indicate an energy exchange with the mean flow, as we 
shall see in t.he next section. 

4. Numerical studies of accelerating stratified flow 
The appropriate linearized equations of motion for a fluid with constant 

aP aP - + U - V2$ = g - cos u - g - sin u (vorticity) 
(;t :x) ax az 

and 
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where the density is po(0) [(l- N 2 z / g )  +p],  a is the angle of tilt of the tube, 

U = N2tzsina 

(Thorpe 19683), q? is the stream function, x is taken along the tube axis up the line 
of greatest slope and z is normal to x in the vertical plane. We look for a solution 
periodic in x of the non-dimensionalized form 

+ = (N2/Ic) #(z ,  t )  exp ikz, 

p = (N2/gIc)p(z, t )  exp ikx. 
Writing Z = Icz and r = Nt ,  we have 

(a/& + irZ sin a)  6 = (i cos a - sina a/aZ)p, 

and (a/ar+irZsina)p = -i#, 

where 0 = (a2pz2-  1) +. 
These equations are to be solved subject to the boundary conditions 

q5 = p = O at Z = +n/2$, 

with q5 = cos [(2n - I)pZ] exp ( - iv7) and p = q5/r for 7 < 0, where 

d = [I +/32(2n- 1)2]1-1 

and n is an integer, corresponding to an initial free wave'of mode n in the absence of 
a mean flow. Equations (5)-(7) are solved using a numerical finite-difference method. 
We write p ,  and 0 as real and imaginary parts and use the finite-difference form of 
(6) (together with the initial conditions a t  the first step) to find p a t  7+ Ar, where AT 
is the time step. Substitution of this solution for p(Z,  7 + A7) in (5) then determines 
0(2, r + A7). Equation (7)  is then solved by a shooting method with qi = 0 a t  the lower 
boundary and with 200 steps AZ in the vertical to find a solution for q5 which satisfies 
q5 = 0 a t  the upper boundary, thus advancing the whole solution by one time step. 
The numerical method was verified by running the program with a -- 0, giving a 
steady propagating wave, and AZ and A7 were varied as a check on numerical con- 
vergence. 

The solutions obtained have been plotted as lines of constant density at 2 s  time 
intervals with the parameters adjusted to correspond to experiments A and B. These 
are shown in figures 5 and 6 respectivelyt alongside the photographs of the experiments 
a t  roughly corresponding times. 

There is good agreement both in the form and phase of the waves in experiment A 
up to about 8s, when imminent breaking is presumably accompanied by nonlinear 
effects not included in the numerical calculations. The vertical distribution of the 
wave amplitude 9 (determined using 9 = g l p J / N 2 )  is shown in figure 8 and fair agree- 
ment is found between the numerical calculation and laboratory experiment bearing 
in mind the difficulties of measuring the small displacements from the rather blurred 
edges of the dye lines. Comparison of these profiles with those corresponding to the 

t A comparison may be made by making two transparencies of each figure and projecting these 
on an overhead projector with the numerical curves overlying the photographs between the 
arrows. 
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FIGURE 8. Profiles of the modulus of the vertical displacement 7 of lines of constant density in 
a first-mode wave in an accelerating flow. The parameters are chosen to correspond to experiment 
A at 2 s intervals. The initial amplitude is chosen to fit the maximum observed amplitude, which is 
used to  normalize the curves. The points are measured from frames of a cine film of the experiment 
at corresponding times (to within 0.04s). 

steady flow solutions (figure 1)  shows that the level of the maximum displacement 
does not fall so rapidly as in the latter, and multiple peaks which have a downward 
phase velocity develop in the accelerating flow. These can also be seen in figure 5 .  It 
was at first thought that these might be a possible indication of instability of the 
accelerating flow (see appendix). It appears more likely, however, that they are 
associated with transient high-order modes arising largely from the mismatch between 
the developing wave form and the steady-state first-mode solution. The transients 
are less well developed and the form of 11 closer to the steady flow solution if a flow with 
the same Richardson number is developed at smaller values of a, i.e. if the acceleration 
is reduced. 



632 S .  A .  Thorpe 

T h  - Y h  

A 

- 
uw iiE 

FIGURE 9. The mean values uw, proportional to minus the Reynolds stress, plotted against depth 
and calculated a t  the times shown, with parameters chosen to correspond to (a) experiment A 
and ( b )  experiment B.  

In  view of the agreement between the numerical calculations and the experiments 
we feel some confidence in proceeding to examine the numerical solutions in more 
detail. One of the most important quantities of interest is the Reynolds stress -pPUw, 
where u and w are the horizontal and vertical components of velocity in the wave 
motion (a@/& and -a@/ax) and the bar denotes an average over one wavelength. 
The rate at which kinetic energy is transferred to the mean flow is UwU' (e.g. Phillips 
1966, p. Z O O ) ,  which is positive if the Reynolds stress is positive since U' is negative. 
Figure 9 ( a )  shows the distribution of UW ( = -Reynolds stress) with depth at intervals 
of 2 s. It is structured, like 7, but in the mean it is negative at all depths, showing that 
the waves lose energy to the mean flow. The time integral of the Reynolds stress up 
to 10 s has a form similar to 7 at 4 s, showing that the majority of the energy lost by 
the waves is transferred to the mean flow kinetic energy in the lower half of the tube. 

Figure 10 ( a )  shows the variation of wave energy, plotted logarithmically, with time. 
Equipartition of energy is approximately maintained, but the wave loses about 82 yo 
of its energy to the mean flow by 8 s before it begins to break. If all the potential energy 
of the wave was at this time transferred to the potential energy of the mean flow by 
wave breaking, whilst the remaining wave kinetic energy was transferred to the mean 
flow kinetic energy, the potential energy transfer divided by the kinetic energy 
transfer would be equal to 0.08, a figure reminiscent of the exchange fractions in 
Kelvin-Helmholtz instability or estimates of the flux Richardson number, to which it is 
related. If a smaller angle of tilt is used (figure 10a) and thus a less rapidacceleration of 
the mean flow, equipartition of energy is even more closely followed and the wave loses 
energy more rapidly in terms of the Richardson number of the accelerating mean flow. 
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FIGURE 10. The logarithms of the potential (P.E.) and kinetic (K.E.) energy of the waves and 
their variation with time and R;*. (a) Experiment A .  The dashed lines show the logarithms of 
the energies calculated using an angle of tilt equal to half the angle used in the experiment and 
are correctly plotted against the R;' scale. (The equivalent time scale is twice that shown.) 
( b )  Experiment B. 

The justification for using figure 3 as a stability diagram for steady flow is that above 
the curves the particle speed appears to exceed the phase speed of the waves, thus 
leading, in a frame of reference moving with the waves, to a reversed flow and to 
S-shaped particle paths (which are also lines of constant density) and thus a region 
in which gravitational instability is possible. Such an argument is untenable in 
unsteady flows. Indeed there is evidence in the numerical experiments that the 
speeds of constant phase may for short times be less than the particle speeds in parts 
of the flow where no signs of breaking are observed in the experiments. We restrict 
attention however to the flow near the lower boundary, where the particle forward 
speed is greatest, and, for given wave slopes, calculate the times (or Ri) at which the 
numerical calculations predict that the forward speed first equals (and ever thereafter 
exceeds) the phase speed. The results are shown in figure 11. Although strictly the 
condition for breaking is invalid at  the lower boundary, which is always a streamline, 
a local examination of the waves in a frame of reference moving with the accelerating 
flow a small distance above the boundary establishes curve (a )  as a stability boundary 
in the same sense as before. 

Also shown in figure 11 is the corresponding curve for half the angle of tilt (curve (c), 
plotted against Ri) and the first-order curve for steady flow from figure 3 (curve b ) .  
The effect of acceleration can be seen by comparing curves ( a )  and ( b ) ,  and is to delay 
the onset of wave breaking. The curve for a smaller angle of tilt, and thus a smaller 
acceleration (curve c ) ,  follows more closely the steady flow. 

Satisfactory comparison between the observations and the present theory is not 
possible for several reasons. The theory predicts breaking at the lower boundary, 
where it is indeed observed, but where viscosity locally modifies the flow. The numerical 
results are for a linear flow, and figure 3 strongly suggests that even in an accelerating 
flow nonlinear effects may be significant. The second- and third-order solutions for 
even the steady flow disregard the change in the mean flow profile which is produced 
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FIUURE 11. The ‘stability diagram’ calculated for experiment A .  (a) Wave slope which, at m y  
time (or a t  the corresponding mean flow Richardson number) in the accelerating flow, is just 
sufficient to promote currents which have a horizontal component equal to  the phase speed of the 
waves near the lower boundary of the tube. ( b )  First-order curveof figure 3. (c) Curve corresponding 
to (a) but for a flow produced by tilting the tube through half the actual angle; this curve is 
correctly plotted against R i ’ ,  but for it the time scale must be multiplied by 2. 

by the energy transfer, and are therefore appropriate to a flow which differs slightly 
(but perhaps significantly) from that which is present in the tube at any Ri. The 
observed time and position of the breaking are however reasonably in accordance with 
the inferences of the theory. 

Comparisons of the numerical results with experiment B are shown in figures 6, 12, 
9(b) and 10(b). The wave amplitude profile 7 (figure 12) appears to tend towards the 
steady flow profile at the Richardson number of the flow, Ri = 2-77, after the tube 
is returned to  the horizontal at 5.5~4, but strong transients remain. The energy loss 
(figure l o b )  resulting from the Reynolds stress (figure 9b) working on the main shear 
is seen to be permanent and there is a trend towards equipartition in the final flow. 
The ‘critical’ slopes a t  first, second and third order of waves in a steady shear flow 
at Ri = 2.77 are found to be 0.109, 0.108 and 0.081 respectively, somewhat larger 
than the actual wave slope 0.066 but sufficiently close to suggest that a rotor may 
indeed have formed, particularly in view of the presence of transients which locally 
enhance the flow. 

The density profile of experiment C was modelled by a hyperbolic-tangent profile 
which matched the gradients at the mid-depth and the numerical method was used 
to follow the development of a first-mode internal wave. (It was necessary to change 
the equations to account for the variable density gradient and corresponding ac- 
celerating mean flow, which introduces an additional term - (a2U/az2) (a~/ax) on the 
left-hand side of (2), and to find the initial wave form by use of a separate program 
for waves in a steady flow of arbitrary density gradient; see Thorpe 1977.) Close 
comparison between the theory and experiment was not possible since too few density 
contours could be marked by dye (figure 7), but the general trends of the experiment, 



Internal wavw in an accelerating shear $ow 

h 

z fh 

a 

17 

1 t = 8  s 

636 

17 
FIGURE 12. Profiles of the modulus of the vertical displacement 7 of lines of constant density 
in a first-mode wave in the flow of experiment B. The amplitude is initially normalized by the 
maximum amplitude observed in the experiment. The points are measured from a cin6 film of 
the experiment at  2 s intervals up to 14 8. Also shown is the steady-flow linear solution 9 for WBVBCJ 

of length 2-53h in a flow with R, = 2.77, corresponding to the experiment. 
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the reduction in amplitude at the top and increase near the bottom of the stratified 
layer, as well as the small change in maximum amplitude, were demonstrated. At the 
time of wave breaking, 7 s after the tube was tilted, when the minimum Richardson 
number of the mean flow was 0.31, the numerical calculation showed that the total 
energy of the wave had been reduced to 0.33 of its initial value and that the potential 
energy was 1.9 times greater than the kinetic energy. In  view of the nonlinear effects 
known here to be important in determining the wave shape (see I) further comparison 
with the linear theory is not attempted. 

5. Discussion 
5.1. The stability of stratijed shear flow 

We have here taken a view of flow stability different from that commonly adopted. 
We have looked, not at a small ‘infinitesimal’ disturbance to a given flow, but at a 
wave disturbance which is of finite amplitude (perhaps small but nevertheless finite 
and sometimes also nonlinear), and have determined whether the wave may develop 
a condition in which convective gravitational overturning is possible as the flow is 
accelerated. In practice such an examination is vital, for if a certain postulated flow 
is to be generated it will usually be via acceleration of the fluid. It may be impossible 
to produce the requireddiow if, in accelerating the fluid towards the desired flow 
state, waves which are inherent, if only as noise, become unstable, break and destroy 
the fluid density structure. Indeed curves such as those of figure 11 indicate that 
possibly, given some e > 0 however small, it may be impossible to reduce the Richard- 
son number of certain flows (in fluids with given density and velocity profile shapes) 
by linear acceleration a ( = N-2 PU/at  az) below a value J(B,  A ,  a) in the presence of 
waves of non-dimensional length A and slope B, without upsetting the density structure. 
(Permanent destruction of the density profile must of course involve diffusive 
processes and neither these nor the effects of viscosity, which may ultimately be 
crucial, are considered here.) It may be that, for some slopes B ,  J is greater than the 
critical value J ,  of the Richardson number a t  which Kelvin-Helmholtz shear in- 
stability occurs in the mean steady flow. For example, in Couette flow with constant 
Brunb-Vaisala frequency, with which we have mostly been concerned here, J ,  = 0, 
but the phase speed tends to the maximum flow speed as Ri tends to $ from above 
(Eliassen et al. 1953). Hence if the flow is quasi-steady J(e ,  A, 0) > $ > J,, and any 
wave, however small, will become unstable and break when the mean flow has a 
Richardson number at which this mean flow is stable. Indications are that the wave 
solutions tend towards the steady solution as the flow acceleration is reduced. Hence 
although the Richardson number J ( E ,  A ,  a )  a t  which a wave in an accelerating flow 
becomes unstable will usually be less than J(e ,  A, 0) it may yet exceed J, for sufficiently 
small accelerations. The wave may of course itself generate a shear sufficient to cause 
Kelvin-Helmholtz instability, but in some cases at  least (see also I and the discussion 
there) wave ‘breaking’ will occur first. In none of the experiments has any sign been 
observed of the instabilities associated with curvature of the streamlines which were 
described by Scorer & Wilson (1963). 
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5.2.  Geophysical and other applications 
In I we pointed out the importance of internal wave breaking accompanying the 
acceleration of the upper layers of the ocean during periods of wind forcing. The novel 
aspect demonstrated here is the great importance and efficiency of Reynolds stresses, 
which transfer the wave energy into the mean motion very rapidly, leaving only a 
fraction of the initial wave energy available for transfer to potential energy when 
breaking occurs. We again recall the results of experiment A ,  in which over 80 % of 
the wave energy is lost in only two wave periods ofthe initial wave as the flow Richard- 
son number is reduced to 0.6. This energy transfer accounts for the sudden collapse 
of the waves discussed in I after breaking. At this stage, although the wave amplitude 
is much t'he same as in the initial flow, the energy is much less and is concentrated near 
the breaking zone. 

The energy remaining in the waves and potentially available for heat transfer by 
mixing is at the top or bottom of the shear layer depending on whether c (the vector 
phase speed), g and D (the mean flow vorticity) form a right- or left-handed vector 
triad. This suggests that internal wave energy in the ocean may be redistributed by 
low-frequency changes, for example mesoscale eddies, and concentrated in those 
regions where the speed of the flow reaches a maximum, perhaps at the foot of the 
rnain thermocline or near-surface mixing layer in the ocean. The wave breaking which 
may result is a possible cause of temperature fine structure and perhaps explains the 
occurrence of persistent density inversions found at the foot of the seasonal thermo- 
cline in Loch Ness, where the mean Richardson number was between 1 and 10 (Thorpe 
1978b). Similar wave breaking has been postulated a t  an atmospheric temperature 
inversion by Goodman & Miller (1977). It may be noted that the conditions of the 
experiments and those which appear to pertain to the upper ocean in periods of strong 
wind forcing, namely that the Richardson number is of order unity and the mean flow 
changes on a time scale comparable with the internal wave period, are not satisfied 
by the models usually adopted to describe the forcing of mean flow by waves (see for 
example Plumb 1977). 

A mechanistic explanation of turbulent entrainment in a stratified fluid at high 
overall Richardson numbers is also suggested by the experiments. Let us consider a 
turbulent fluid layer driven by wind on its free upper surface or, as in Kato & Phillips' 
(1969) experiment, by a moving lid. The lower boundary, beyond which the fluid is in 
laminar flow, is stably stratified. Two sets of free internal gravity waves may be 
generated at the interface, one set with forward phase speeds moving in the direction 
of motion in the upper layer and the other set moving backwards. Waves with speeds 
lying between those of the two layers may possibly exist (see Banks et al.), but if so 
they are singular or neighbours to unstable m'odes and liable to lose energy rapidly. 
If the Richardson number is sufficiently high, however, no unstable modes can exist 
which will lead to a breakdown of the mean flow. Of the two sets of free waves, the 
forward moving are most likely to be generated since they have phase speeds most 
closely matched to the forcing turbulent fluctuations. These waves may grow under 
the action of the turbulent field, but will in any case transfer kinetic energy to the flow 
by Reynolds stresses in the mean velocity gradient. This transfer may eventually 
determine the mean flow velocity profile. If the waves grow sufficiently they will 
break sporadically at the top of the density interface (since c, g and S2 area right-handed 
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triad), leading to the transfer of heat or solute into the turbulent region. The wave 
energy is provided by the turbulence and, as we have seen, of this only admall fraction 
is available for transfer to potential energy (or to transfer heat), the majority of the 
energy being transferred into the kinetic energy of the mean flow. These proc,esses 
provide a mechanism for mixing which is absent in experiments on grid mixing 
with zero mean flow (see Turner 1973, chap. 9). 

I am grateful for the assistance of Miss C. Barnes and Mr J. Herbert in preparing 
the experiments and measuring the films during their summer vacation from university. 

Appendix. Waves in an unbounded uniformly accelerating stratified shear 
flow 

dimensions of the experimental tube when the tube is tilted through an angle a. 
We consider the development of waves which are of a scale much smaller than the 

The equation of motion is 

po(0) Du/Dt = - V p  - gp(sina, 0, cos a), (8) 

wherep is a specified function of z a t  t = 0. If initially p = po(0) (1 - yz), then a solution 
with u = 0 a t  t = 0 is 

(Thorpe 1968b). Consider now a small perturbation about this solution. Neglecting 
products of the perturbation terms and their derivatives, we can reduce (8) together 
with the continuity equation to one equation in the density perturbation p', where 

u = gyztsina, p = po(0) (1 - yz) 

P = PO(0) (1 - Y Z )  +PI:  

t?X ax a2 a2 j p '  ax (9) (; + pzt &) (; v2 + pzt - v2 + 2pt - 
a 

where p = gysina. Using the transformation 5 = x--+,8zt2, 7 = z, 7 = t/p+ (see also 
Phillips (1966, p. 180) and Hartman (1975) for a similar transformation, but of a steady 
flow), we find 

A solution which corresponds to a plane internal gravity wave a t  t = 0 is 

PI = P ( 4  expiM+l7) ,  

where 

This may be rewritten in the form 

d24/&72+ F ( r )  4 = 0, 

where $ ( T )  = [I + ( h - g ~ ~ ) ~ ] 4 p ,  h = l / k  

and 
cot a [r4 - 472(h + tan a) + 4( 1 + h2)] 

4 [ 1 + ( A  - & T ~ ) ~ ] ] "  
F(7)  = 
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Growing solutions for g3 will occur if F(7)  < 0, i.e. when 

2{(h + t ana)  - (tan2a+ 2h tan ct - I)*} < 7 2  < 2{(h + tan a)  + (tan2a + ZA tan a - I)#}. 

The smallest value of 7 a t  which F(7)  becomes negative is r2 = cot a when h = Q cot a. 
(Here, however, p = p(7) exp i ( k x  + Ez - &/3zt2k) = p(7) exp i k x  and the waves are of 
large vertical extent.) The time for which a wave with given ( k ,  1 )  will grow is however 
restricted, and whilst limited growth may occur it will not be continued. At large 7 

the growth rate will in any case be restricted since F N cot a/472 and p - 2g3/r2. It 
thus appears that waves of scale much less than the tube dimensions will not grow 
indefinitely and become unstable in a classical sense. 
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FIGURE 5. Experiment A .  Waves of the first internal mode in an accelerating shear flow with a 
constant Brunt-Viisilii frequency N = 2.24 rad SKI. To the left are photographs of the flow in 
the tube, which is 16 em in depth. The waves are propagating to the left and initially have a period 
3.98 s. The photographs are a t  (a )  - 0.2 s, ( b )  2.1 s, (c) 3.85 s, ( d )  6.2 s, (e )  8.0 s, ( f )  9.8s and (g) 11.3 s 
after the tube is tilted through 0.072 rad down to the left. The surge originating from the right end 
of the tube is seen entering the section in (9).  To the right are shown computer simulations of 
lines of constant density (a) a t  the moment of tilt and (b)-(g) at subsequent 2 s intervals (see 3 4). 

THORPE (Fucing p .  640) 
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FIGURE 6. Experiment B. Waves of the first internal mode in an accelerating shear flcw with a 
Brunt-ViiisiilB frequency N = 2.18 rad s-1. To the left are photographs of the flow in the tube, 
which is 16 em in depth. The waves are propagating to the left and initially have a period 4.82 s. 
The tube was tilted at  time t = 0 through G.051 rad down to the left and back into a horizontal, 
position a t  5.5s.  The photographs are at  ( G )  -0.05s, ( b )  1.85s, (c) 4.20s, ( d )  5.98s, ( e )  7.80 s, 
( f )  10.07s, (9 )  11.97s and (h)  13.78s.  To the right are shown computer simulations of lines af 
constant density (a )  a t  the moment of tilt and (b)-(h)  at subsequent 2 s intervals (see 3 4). 

THORPE 
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FIGURE 7. Experiment C. Waves of the first intercal mode in an accelerating shear flow with 
uniform density in layers 5.75 cm thick above and below the upper and lower dye lines respectively 
and an approximately constant Brunt-Viiisak frequency N = 5.05 rad 5-1 between. The tube 
depth is 16 cm. The waves propagate to the left and initially have a period 2.75 S. The waves are 
shown at (a)  -0.13s, ( b )  1.78s, ( c )  3.22s,  (d )  4.67s,  ( e )  S.lOs, ( f )  7 .07s ,  (9 )  8.05s and (h)  9.00s 
after the tube was tilted down to the left through 0.041 rad. The surge originating from the right- 
hand end of the tube is seen entering the section in ( 1 2 ) .  
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